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KIT-Sch-GE (1): SUMMARY 

Our cell tracking method is a tracking by detection method split into a segmentation step and a tracking 

step which includes the correction of some segmentation errors. For the segmentation, a deep learning-

based prediction of cell distance maps is used followed by a watershed post-processing. The tracking is 

based on a displacement estimation in combination with a matching formulated as maximum flow 

minimum cost problem.  

 

KIT-Sch-GE (1): PREPROCESSING 

This step involves a minimum-maximum normalization into the [-1, 1] range (whole volume for 3D data). 

For Fluo-N3DL-TRIC, the contrast limited adaptive histogram equalization (CLAHE) is applied to each slice 

independently. The model inputs are zero-padded if necessary. The frames of Fluo-C3DH-H157 are 

downsampled to half of the original size. 

 

KIT-Sch-GE (1): SEGMENTATION 

The segmentation is based on a 2D convolutional neural network which is applied slice-wise to the 3D 

datasets. Our goal is to train a single model which can be used for all cell types. Only some parameters in 

the post-processing are adjusted to single datasets. 

 

Architecture. Our architecture is based on the 2D U-Net architecture [1]. However, instead of using a 

single decoder path, two parallel decoder paths are used which allow each decoder path to focus on 

features related to the desired output. The maximum pooling layers are replaced with 2D convolutional 

layers with stride 2 and kernel size 3. Additionally, batch normalization layers are added. The number of 

feature maps is doubled from 64 feature maps to a maximum of 1024 and halved in each decoder path 

correspondingly. The rectified linear unit activation function is used within the network and a linear 

activation for the output layer. 
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Training Data. The assembled training dataset consists of the provided Cell Tracking Challenge training 

data, publicly available data, and synthetic data. Since some of the Cell Tracking Challenge gold truth 

data show only some annotated cells, and the silver truth data are not error free in any case, only 

selected 2D training data and slices of the 3D data are used as follows: 

• BF-C2DL-HSC: 33 gold truth frames 

• BF-C2DL-MuSC: 25 gold truth frames 

• Fluo-N2DH-GOWT1: 4 gold truth frames, 20 silver truth frames 

• Fluo-N2DH-SIM+: 35 gold truth frames 

• Fluo-N2DL-HeLa: 40 silver truth frames 

• Fluo-N3DH-SIM+: 10 gold truth slices 

• Fluo-N3DH-CE: 6 gold truth slices 

• Fluo-C3DL-MDA231: 6 gold truth slices 

• Synthetic data: 30 slices 

• BBBC038: 6 Drosophila slices 

• SBDE4 in [2]: 24 slices 

The final training dataset consists of crops of these images, with the size of 256×256 pixels. Crops 

showing less than four objects are removed from the training dataset automatically (not for BF-C2DL-

MuSC and Fluo-N3DH-CE). In addition, some crops were removed manually, e.g. crops showing only 

parts of cells and many Fluo-N2DL-HeLa crops showing nearly the same. In total, the training dataset 

consist of 797 crops and the validation dataset of 200 crops. 

 

Training Data Representation. A key for the successful application of supervised deep learning methods 

in the absence of large training data sets, is to learn outputs which generalize well. Therefore, instead of 

the often used cell and cell border representations (to get markers for a marker-based watershed post-

processing for instance segmentation), distance transforms are used. In principle, this distance transform 

is sufficient to get markers for the post-processing. However, to reduce the probability to merge cells 

also cell neighbor distance transforms are used (with gray-scale closing) for the second decoder path of 

our architecture. 

 

Training Process Settings. Models are trained for a maximum of 250 epochs with a batch size of 8 using 

the Adam optimizer with a starting learning rate of 0.0008. After 12 epochs without validation loss 

improvement, the learning rate is multiplied with 0.25 until a minimum learning rate of 0.00006 is 
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reached. To learn the cell distance transformation and the cell neighbor distance transformation, 

PyTorch’s SmoothL1Loss is used and both losses are added. During training flipping, scaling, rotation, 

contrast changing, blurring and noise adding augmentations are applied. The best model is selected 

manually. 

 

Inference.  A batch size of 1 is used which allows also people without GPUs with more than 12 GB VRAM 

to execute our code. Only for Fluo-N3DL-TRIF a batch size of 4 is used, and thus at least 24 GB VRAM and 

32 GB RAM should be available. For 3D data, the z-slices are processed independently and stacked. 

 

Post-Processing. The post-processing starts with a 2D/3D Gaussian smoothing of the predicted cell 

distance transform (σcell) and cell neighbor distance transform (σneigh). Then, the region to flood with a 

2D/3D watershed is extracted out of the smoothed cell distance transform prediction using the threshold 

Tmask. To get markers, the smoothed cell neighbor distance transform prediction taken to the power of a 

(depending on how well the transforms are learned for a specific dataset) is subtracted from the cell 

prediction and thresholded with the threshold Tmarker. Markers with an area smaller than 2 are filtered. 

The parameters for the processed cell tracking challenge data sets are shown in Table 1. For some 

datasets, markers are closed using a morphological closing operation (Fluo-N3DH-SIM+) or large artifacts 

are removed (BF-C2DL-HSC and Fluo-N3DL-TRIC). To process the large volumes of Fluo-N3DL-TRIF, only 

each second slice is processed and the volume additionally split into two parts with small overlap due to 

RAM restrictions. The final predictions are upsampled using a nearest-neighbor interpolation. For Fluo-

N3DH-CE, merged cell nuclei along the axial axis are detected if their volume is bigger than 
4

3
 times the 

mean object volume at that single frame. Detected merged nuclei are split, thresholding the cell 

prediction with a threshold of 0.75. 

 

KIT-Sch-GE (1): TRACKING 

First, for each segmented object at t = 0 a track is initialized. For datasets with tracking seeds, tracks are 

initialized only for segmentation masks including a seed. Based on the initial segmentation a region of 

interest (ROI) is defined for each track. At each time point t > 0 a displacement between the previous 

frame and the current frame for each ROI is estimated. Then, each ROI at time point t is adapted 

according to its displacement estimation. For the displacement estimation a cross correlation is used. 

Next, for each active track at time point t – 1, a set of potential matching candidates is selected at time 

point t based on its ROI. A track is considered active if it has no successors and its last time point an 



object has been matched to it, tlast, is less than t − tlast < ∆t time points apart from t. At each time point t a 

linking between tracks and matching candidates is applied. For the object matching an adapted version 

of [3] is used. The algorithm has been adapted as follows. First, no merging events are considered. The 

appearance costs of objects are set to 0, as spurious tracks will be filtered out by the subsequent post-

processing. The matching cost 𝑐𝑛,𝑠 between track s and matching candidate n are adapted to 𝑐𝑛,𝑠 =

‖𝑞𝑡
𝑠 − 𝑝𝑡

𝑛‖2, where 𝑞𝑡
𝑠 is the estimated position of track s at time t and 𝑝𝑡

𝑛 is the position of the matching 

candidate. The estimated position 𝑞𝑡
𝑠 is given by 𝑞𝑡

𝑠 = 𝑝𝑡−1
𝑠 + 𝑑𝑠 where 𝑑𝑠is the estimated displacement 

of the ROI of track s between time points t − 1 and t. The splitting costs are computed based on the 

position of the track and its potential successors and their size. The number of nodes within the 

constructed graph is reduced, as each active track is only linked to segmentation mask overlapping with 

its ROI. Moreover, all active tracks are added to the graph and not only objects between successive time 

steps. This procedure helps to account for single segmentation errors as tracks can be relinked. For 

tracks with missing segmentation masks the position is linearly interpolated between t and tlast and 

masks are filled at the missing time steps. For the end-to-end tracking datasets, each non-matched 

object at time point t is initialized as a new track. 

 

KIT-Sch-GE (1): POST-PROCESSING 

Tracks of length one without any predecessor and successors are removed. Furthermore, frames without 

any tracked object are replaced by the tracking result of the temporally closest frame. 
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